Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.280
Filtrar
1.
J Phys Chem A ; 128(15): 3015-3023, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38593044

RESUMO

Respiratory viruses, such as influenza and severe acute respiratory syndrome coronavirus 2, represent a substantial public health burden and are largely transmitted through respiratory droplets and aerosols. Environmental factors such as relative humidity (RH) and temperature impact virus transmission rates, and a precise mechanistic understanding of the connection between these environmental factors and virus transmission would improve efforts to mitigate respiratory disease transmission. Previous studies on supermicrometer particles observed RH-dependent phase transitions and linked particle phase state to virus viability. Phase transitions in atmospheric aerosols are dependent on size in the submicrometer range, and actual respiratory particles are expelled over a large size range, including submicrometer aerosols that can transmit diseases over long distances. Here, we directly investigated the phase transitions of submicrometer model respiratory aerosols. A probe molecule, Nile red, was added to particle systems including multiple mucin/salt mixtures, a growth medium, and simulated lung fluid. For each system, the polarity-dependent fluorescence emission was measured following RH conditioning. Notably, the fluorescence measurements of mucin/NaCl and Dulbecco's modified Eagle's medium particles indicated that liquid-liquid phase separation (LLPS) also occurs in submicron particles, suggesting that LLPS can also impact the viability of viruses in submicron particles and thus affect aerosol virus transmission. Furthermore, the utility of fluorescence-based measurements to study submicrometer respiratory particle physicochemical properties in situ is demonstrated.


Assuntos
Mucinas , Aerossóis e Gotículas Respiratórios , Umidade , Aerossóis/química
2.
Int J Pharm ; 655: 123966, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38452834

RESUMO

The potential of fine excipient materials to improve the aerodynamic performance of carrier-based dry powder inhalation (DPI) formulations is well acknowledged but not fully elucidated. To improve the understanding of this potential, we studied two fine excipient materials: micronized lactose particles and silica microspheres. Inhalation formulations, each composed of a coarse lactose carrier, one of the two fine excipient materials (0.0-15.0 % w/w), and a spray-dried drug (fluticasone propionate) material (1.5 % w/w) were prepared. The physical structure, the flow behavior, the aerosolization behavior, and the aerodynamic performance of the formulations were studied. The two fine excipient materials similarly occupied carrier surface macropores. However, only the micronized lactose particles formed agglomerates and appeared to increase the tensile strength of the formulations. At 2.5 % w/w, the two fine excipient materials similarly improved drug dispersibility, whereas at higher concentrations, the micronized lactose material was more beneficial than the silica microspheres. The findings suggest that fine excipient materials improve drug dispersibility from carrier-based DPI formulations at low concentrations by filling carrier surface macropores and at high concentrations by forming agglomerates and/or enforcing fluidization. The study emphasizes critical attributes of fine excipient materials in carrier-based DPI formulations.


Assuntos
Excipientes , Lactose , Excipientes/química , Pós/química , Lactose/química , Portadores de Fármacos/química , Inaladores de Pó Seco , Administração por Inalação , Propriedades de Superfície , Dióxido de Silício , Tamanho da Partícula , Aerossóis/química
3.
J Chromatogr A ; 1720: 464777, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38432108

RESUMO

The majority of commercially available monoclonal antibody (mAb) formulations are stabilized with one of three non-ionic surfactants: polysorbate 20 (PS20), polysorbate 80 (PS80), or poloxamer 188 (P188). All three surfactants are susceptible to degradation, which can result in functionality loss and subsequent protein aggregation or free fatty acid particle formation. Consequently, quantitative, and qualitative analysis of surfactants is an integral part of formulation development, stability, and batch release testing. Due to the heterogeneous nature of both polysorbates and poloxamer, online isolation of all the compounds from the protein and other excipients that may disturb the subsequent liquid chromatography with charged aerosol detection (LC-CAD) analysis poses a challenge. Herein, we present an analytical method employing LC-CAD, utilizing a combination of anion and cation exchange columns to completely remove proteins online before infusing the isolated surfactant onto a reversed-phase column. The method allows high throughput analysis of polysorbates within 8 minutes and poloxamer 188 within 12 minutes, providing a separation of the surfactant species of polysorbates (unesterified species, lower esters, and higher esters) and poloxamer 188 (early eluters and main species). Accuracy and precision assessed according to the International Council for harmonisation (ICH) guideline were 96 - 109 % and ≤1 % relative standard deviation respectively for all three surfactants in samples containing up to 110 mg/mL mAb. Subsequently, the method was effectively applied to quantify polysorbate 20 and polysorbate 80 in nine commercial drug products with mAb concentration of up to 180 mg/mL.


Assuntos
Poloxâmero , Polissorbatos , Polissorbatos/química , Poloxâmero/análise , Anticorpos Monoclonais/química , Tensoativos/química , Cromatografia Líquida , Aerossóis/química
4.
Int J Pharm ; 654: 123960, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38447778

RESUMO

Multidrug-resistant tuberculosis (MDR-TB) has posed a serious threat to global public health, and antimicrobial peptides (AMPs) have emerged to be promising candidates to tackle this deadly infectious disease. Previous study has suggested that two AMPs, namely D-LAK120-A and D-LAK120-HP13, can potentiate the effect of isoniazid (INH) against mycobacteria. In this study, the strategy of combining INH and D-LAK peptide as a dry powder formulation for inhalation was explored. The antibacterial effect of INH and D-LAK combination was first evaluated on three MDR clinical isolates of Mycobacteria tuberculosis (Mtb). The minimum inhibitory concentrations (MICs) and fractional inhibitory concentration indexes (FICIs) were determined. The combination was synergistic against Mtb with FICIs ranged from 0.25 to 0.38. The INH and D-LAK peptide at 2:1 mole ratio (equivalent to 1: 10 mass ratio) was identified to be optimal. This ratio was adopted for the preparation of dry powder formulation for pulmonary delivery, with mannitol used as bulking excipient. Spherical particles with mass median aerodynamic diameter (MMAD) of around 5 µm were produced by spray drying. The aerosol performance of the spray dried powder was moderate, as evaluated by the Next Generation Impactor (NGI), with emitted fraction and fine particle fraction of above 70 % and 45 %, respectively. The circular dichroism spectra revealed that both D-LAK peptides retained their secondary structure after spray drying, and the antibacterial effect of the combination against the MDR Mtb clinical isolates was successfully preserved. The combination was found to be effective against MDR Mtb isolates with KatG or InhA mutations. Overall, the synergistic combination of INH with D-LAK peptide formulated as inhaled dry powder offers a new therapeutic approach against MDR-TB.


Assuntos
Isoniazida , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Isoniazida/farmacologia , Pós/química , Peptídeos Antimicrobianos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Aerossóis/química , Administração por Inalação , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Inaladores de Pó Seco , Tamanho da Partícula
5.
Int J Pharm ; 654: 123984, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461874

RESUMO

Both latent and multidrug-resistant tuberculosis (TB) have been causing significant concern worldwide. A novel drug, pretomanid (PA-824), has shown a potent bactericidal effect against both active and latent forms of Mycobacterium tuberculosis (MTb) and a synergistic effect when combined with pyrazinamide and moxifloxacin. This study aimed to develop triple combination spray dried inhalable formulations composed of antitubercular drugs, pretomanid, moxifloxacin, and pyrazinamide (1:2:8 w/w/w), alone (PaMP) and in combination with an aerosolization enhancer, L-leucine (20 % w/w, PaMPL). The formulation PaMPL consisted of hollow, spherical, dimpled particles (<5 µm) and showed good aerosolization behaviour with a fine particle fraction of 70 %. Solid-state characterization of formulations with and without L-leucine confirmed the amorphous nature of moxifloxacin and pretomanid and the crystalline nature of pyrazinamide with polymorphic transformation after the spray drying process. Further, the X-ray photoelectron spectroscopic analysis revealed the predominant surface composition of L-leucine on PaMPL dry powder particles. The dose-response cytotoxicity results showed pyrazinamide and moxifloxacin were non-toxic in both A549 and Calu-3 cell lines up to 150 µg/mL. However, the cell viability gradually decreased to 50 % when the pretomanid concentration increased to 150 µg/mL. The in vitro efficacy studies demonstrated that the triple combination formulation had more prominent antibacterial activity with a minimum inhibitory concentration (MIC) of 1 µg/mL against the MTb H37Rv strain as compared to individual drugs. In conclusion, the triple combination of pretomanid, moxifloxacin, and pyrazinamide as an inhalable dry powder formulation will potentially improve treatment efficacy with fewer systemic side effects in patients suffering from latent and multidrug-resistant TB.


Assuntos
Nitroimidazóis , Pirazinamida , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Pirazinamida/farmacologia , Pirazinamida/química , Moxifloxacina/farmacologia , Moxifloxacina/química , Pós/química , Leucina/química , Aerossóis/química , Antituberculosos/farmacologia , Antituberculosos/química , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Administração por Inalação , Inaladores de Pó Seco/métodos , Tamanho da Partícula
6.
Anal Bioanal Chem ; 416(6): 1349-1361, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38217698

RESUMO

Smoking-related diseases remain a significant public health concern, and heated tobacco products (HTPs) have emerged as a potential alternative to cigarettes. While several studies have confirmed that HTP aerosols contain lower levels of harmful and potentially harmful constituents (HPHCs) than cigarette smoke, less is known about constituents that are intrinsically higher in HTP aerosols. This study provides a comprehensive comparative assessment of an HTP aerosol produced with Tobacco Heating System 2.2 (THS) and comparator cigarette (CC) smoke aiming at identifying all unique or increased compounds in THS aerosol by applying a broad set of LC-MS and GC × GC-MS methods. To focus on differences due to heating versus burning tobacco, confounding factors were minimized by using the same tobacco in both test items and not adding flavorants. Of all analytical features, only 3.5%-corresponding to 31 distinctive compounds-were significantly more abundant in THS aerosol than in CC smoke. A notable subset of these compounds was identified as reaction products of glycerol. The only compound unique to THS aerosol was traced back to its presence in a non-tobacco material in the test item and not a direct product of heating tobacco. Our results demonstrate that heating a glycerol-containing tobacco substrate to the temperatures applied in THS does not introduce new compounds in the resulting aerosol compared to CC smoke which are detectable with the method portfolio applied in this study. Overall, this study contributes to a better understanding of the chemical composition of HTP aerosols and their potential impact on human health.


Assuntos
Fumar Cigarros , Produtos do Tabaco , Humanos , Calefação , Glicerol , Aerossóis/química
7.
ACS Nano ; 18(6): 4862-4870, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38231040

RESUMO

Frequent outbreaks of viral diseases have brought substantial negative impacts on society and the economy, and they are very difficult to detect, as the concentration of viral aerosols in the air is low and the composition is complex. The traditional detection method is manually collection and re-detection, being cumbersome and time-consuming. Here we propose a virus aerosol detection method based on microfluidic inertial separation and spectroscopic analysis technology to rapidly and accurately detect aerosol particles in the air. The microfluidic chip is designed based on the principles of inertial separation and laminar flow characteristics, resulting in an average separation efficiency of 95.99% for 2 µm particles. We build a microfluidic chip composite spectrometer detection platform to capture the spectral information on aerosol particles dynamically. By employing machine-learning techniques, we can accurately classify different types of aerosol particles. The entire experiment took less than 30 min as compared with hours by PCR detection. Furthermore, our model achieves an accuracy of 97.87% in identifying virus aerosols, which is comparable to the results obtained from PCR detection.


Assuntos
Microfluídica , Aerossóis/química
8.
Mol Pharm ; 21(1): 164-172, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059771

RESUMO

In this article, we specify for the first time a quantitative biopharmaceutics classification system for orally inhaled drugs. To date, orally inhaled drug product developers have lacked a biopharmaceutics classification system like the one developed to navigate the development of immediate release of oral medicines. Guideposts for respiratory drug discovery chemists and inhalation product formulators have been elusive and difficult to identify due to the complexity of pulmonary physiology, the intricacies of drug deposition and disposition in the lungs, and the influence of the inhalation delivery device used to deliver the drug as a respirable aerosol. The development of an inhalation biopharmaceutics classification system (iBCS) was an initiative supported by the Product Quality Research Institute (PQRI). The goal of the PQRI iBCS working group was to generate a qualitative biopharmaceutics classification system that can be utilized by inhalation scientists as a "rule of thumb" to identify desirable molecular properties and recognize and manage CMC product development risks based on physicochemical properties of the drug and the deposited lung dose. Herein, we define the iBCS classes quantitatively according to the dose number and permeability. The proposed iBCS was evaluated for its ability to categorize marketed inhaled drugs using data from the literature. The appropriateness of the classification of each drug was assessed based on published development, clinical and nonclinical data, and mechanistic physiologically based biopharmaceutics modeling. The inhaled drug product development challenges for each iBCS classification are discussed and illustrated for different classes of marketed inhaled drugs. Finally, it is recognized that discriminatory laboratory methods to characterize regional lung deposition, dissolution, and permeability will be key to fully realizing the benefits of an iBCS to streamline and derisk inhaled drug development.


Assuntos
Biofarmácia , Nebulizadores e Vaporizadores , Biofarmácia/métodos , Solubilidade , Preparações Farmacêuticas , Administração por Inalação , Aerossóis/química , Permeabilidade
9.
Chemosphere ; 349: 140811, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040248

RESUMO

Alkene ozonolysis can produce stabilized Criegee intermediates (SCIs), which play a key role in oligomers' formation. Though styrene and isoprene coexist in the ambient atmosphere as important anthropogenic and biogenic secondary organic aerosol (SOA) precursors, respectively, their cross-reactions have not received attention. This study investigated the interactions of SCIs from styrene and isoprene ozonolysis for the first time. The high-resolution Orbitrap mass spectrometer was used to determine the unique ion mass spectra of the isoprene-styrene-O3 mixture. The results show that the signal intensities of new ions account for >8.4% of total ions in the mass spectra of the styrene-isoprene-O3 mixed system. Styrene and isoprene ozonolysis can produce characteristic C7-SCI and C4-SCI, respectively. C7-SCI and C4-SCI can be involved in the cross-reactions, and the results of tandem mass spectra directly confirmed both C7-SCI and C4-SCI as chain units. The O/C and H/C ratios of cross-products are in the range of 0.38-1.07 and 1.00-1.50, respectively, which are consistent with cross-reaction products. Adding a C7-SCI unit reduces the oligomer's volatility by 1.3-1.4 orders of magnitude lower than adding a C4-SCI unit. Thus, C4-SCI can compete with C7-SCI to react with styrene-derived RO2/RC(O)OH to produce more volatile cross-products, while the less volatile cross-products can be formed when isoprene-derived RO2/RC(O)OH reacted with C7-SCI instead of C4-SCI. The SOA yield of the mixed system is lower than that of the single styrene-O3 system but higher than that of the single isoprene-O3 system. Ambient particles were also collected, and 5 possible SCI-related cross-products were identified. This study illustrates the effects of SCI-related cross-reactions on SOA components and physicochemical properties, providing a basis for future research on SCI-related cross-reactions that frequently occur in the ambient atmosphere.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/química , Ozônio/química , Íons , Estirenos , Aerossóis/química
10.
Chemosphere ; 349: 140795, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016525

RESUMO

Sea-salt aerosols (SSA) are one of the key natural aerosols in our atmosphere, consisting predominantly of sodium chloride (NaCl). Throughout their atmospheric transport, these aerosols undergo complex internal mixing, giving rise to a rich variety of inorganic and organic species, including dicarboxylic acids. This study investigates firstly the composition and deliquescence properties of coarse particles containing pure malonic acid (MA2, CH2(COOH)2) and internally mixed NaCl and MA2, by means of an acoustic levitation system coupled with a Raman microspectrometer. Secondly, we report here the first experimental observation and characterization of the products arising from photochemical reactions under UV-Visible irradiation (338 ≤ λ ≤ 414 nm) in the absence of an oxidant under acoustic levitation conditions in MA2 and NaCl/MA2 aerosols. Furthermore, the impact of photodegradation on the hygroscopic properties of these particles is examined. We confirmed the irreversible formation of monosodium malonate (NaMA, HOOCCH2COONa), which coexists with NaCl or MA2 on non-irradiated particles. We also demonstrated the formation of oxalic acid (OA2, HOOC-COOH) within irradiated MA2 droplets and the appearance of glyoxylic acid (GlyA, HCOCOOH) in NaCl containing droplets. The photolysis process exerts a marked effect on the hygroscopic properties of the particles, resulting in a shift in deliquescence transitions toward higher relative humidity (RH) values. This study contributes to the understanding of the intricate physicochemical processes involved in SSA during their atmospheric transport. Likewise, this work sheds light on the impacts of these types of aerosols on cloud formation and climate change.


Assuntos
Malonatos , Cloreto de Sódio , Cloreto de Sódio/química , Fotólise , Aerossóis/química
11.
Int J Pharm ; 650: 123698, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38081559

RESUMO

Pulmonary delivery of protein-based therapeutics, including antibodies, is a promising option for treating respiratory diseases. Spray drying is a widely used method for producing dry powder formulations with mannitol being a commonly used excipient for these inhalation formulations. There is limited research available concerning the utilization of mannitol as an excipient in the spray drying of proteins and its impact on aerosol performance. This study highlights the importance to understand mannitol's potential role and impact in this context. To investigate the impact of mannitol on physical stability and aerosolization of spray-dried protein formulations, bovine serum albumin (BSA) was employed as a model protein and formulated with different concentrations of mannitol via spray drying. The spray-dried solids were characterized for their particle size using Malvern mastersizer and aerodynamic particle size using next generation impactor (NGI). Additionally, the solids were characterized with solid-state Fourier-transform infrared spectroscopy (ssFTIR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and solid-state nuclear magnetic resonance spectroscopy (ssNMR) to analyze the change in their secondary structure, crystallinity, particle morphology, and protein-excipient interaction, respectively. Size exclusion chromatography (SEC) was used to investigate changes in monomer content resulting from storage under stressed condition of 40 °C. Protein formulations containing more than 33 % mannitol by weight showed crystallization tendencies, causing an increase in monomer loss over time. ssNMR data also showed mixing heterogeneity of BSA and mannitol in the formulations with high mannitol contents. Futhermore, fine particle fraction (FPF) was found to decrease over time for the formulations containing BSA: Mannitol in the ratios of 2:1, 1:2, and 1:5, due to particle agglomeration induced by crystallization of mannitol. This study underscores the significant influence of excipients such as mannitol on the aerosol performance and storage stability of spray-dried protein formulations.


Assuntos
Excipientes , Manitol , Pós/química , Manitol/química , Excipientes/química , Administração por Inalação , Aerossóis/química , Tamanho da Partícula , Proteínas , Inaladores de Pó Seco/métodos
12.
J Environ Sci (China) ; 139: 206-216, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105048

RESUMO

The aging process of atmospheric aerosols usually leads to a mixture of inorganic salts and organic compounds of anthropogenic origin. In organic compounds, polyhydroxy organic acids are important components, however, the study on composition and hygroscopic properties of the mixture containing inorganics and polyhydroxy organic acids is scanty. In this study, gluconic acid, the proxy of polyhydroxy organic acids, is mixed with the representative nitrate (Mg(NO3)2, Ca(NO3)2) to form aerosols. ATR-FTIR and optical microscopy are employed to study the component changes and hygroscopicity as a function of relative humidity. As relative humidity fluctuates, the FTIR-ATR spectra display that the internal mixed gluconic acid (CH2(CH)4(OH)5COOH) and nitrate can react to release acidic gases, forming relevant gluconate and further affecting the hygroscopicity. The specific presentation is particles cannot be recovered to their original size after the dehydration-hydration process and there will be some disparities in GF for mixed particles. For the gluconic acid-Ca(NO3)2/Mg(NO3)2 mixtures with molar ratios of 1:1, higher degree of reaction resulting in the production of large amounts of gluconate should be responsible to the lower hygroscopicity compared to ZSR model. For 1:2 gluconic acid-nitrate mixed systems (with higher nitrate content), the hygroscopicity of mixtures are higher than the ZSR prediction. A possible reason could be 'salt-promoting effect' on the organic fractions of the surplus inorganic salt in the mixture. These data can improve the chemical composition list evaluation, in turn hygroscopic properties and phase state of atmospheric aerosol, and then the climate effect.


Assuntos
Gluconatos , Nitratos , Molhabilidade , Compostos Orgânicos , Aerossóis/química
13.
Sci Rep ; 13(1): 21650, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066090

RESUMO

Vaping has become more popular and different brands and types of vaping devices have rapidly emerged. However, little is known about the potential health risks of human inhalation exposures to the volatile chemicals in the vapour, which includes both directly vaporised components of vaping liquid and their reaction products formed during vaping processes. This study investigated reaction products of two monoterpenes (α-pinene and terpinolene) that are used as flavouring agents in vaping liquids with a focus on the identification of reaction products and their formation pathways. The thermal desorption was conducted under an in situ condition that is in the range of heating coil temperature in vaping by thermally desorbing the chemicals at a temperature range of 100-300 °C. Additional clean air was introduced during the thermal desorption. 36 and 29 reaction products were identified from α-pinene and terpinolene, respectively, at a relative concentration of 0.01% and greater in the desorbed mixture. 3-Carene was the dominant reaction product of α-pinene, while reaction products of terpinolene was dominated by p-isopropenyltoluene. Several reaction pathways including ring opening, allylic oxidation, cyclo-etherification, Wagner-Meerwein rearrangement, epoxidation, cleavage and removal of partial structure, and dehydration were involved in the formation of various reaction products. These pathways and resulting relative concentrations of residual parent compound and reaction products were influenced by both temperature and amount of air present during thermal desorption. The study results demonstrate possible existence of reaction products from thermally labile chemicals like monoterpenes in vaping aerosols and can help inform policies regulating vaping devices and products to protect public health.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Humanos , Monoterpenos/química , Temperatura , Aerossóis/química
14.
Proc Natl Acad Sci U S A ; 120(48): e2308696120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37991941

RESUMO

Our understanding of ocean-cloud interactions and their effect on climate lacks insight into a key pathway: do biogenic marine emissions form new particles in the open ocean atmosphere? Using measurements collected in ship-borne air-sea interface tanks deployed in the Southwestern Pacific Ocean, we identified new particle formation (NPF) during nighttime that was related to plankton community composition. We show that nitrate ions are the only species for which abundance could support NPF rates in our semicontrolled experiments. Nitrate ions also prevailed in the natural pristine marine atmosphere and were elevated under higher sub-10 nm particle concentrations. We hypothesize that these nucleation events were fueled by complex, short-term biogeochemical cycling involving the microbial loop. These findings suggest a new perspective with a previously unidentified role of nitrate of marine biogeochemical origin in aerosol nucleation.


Assuntos
Atmosfera , Nitratos , Atmosfera/química , Clima , Compostos Orgânicos/química , Oceano Pacífico , Aerossóis/química
15.
Mol Pharm ; 20(11): 5682-5689, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37782000

RESUMO

Protein-based drugs are becoming increasingly important, but there are challenges associated with their formulation (for example, formulating stable inhalable aerosols while maintaining the proper long-term stability of the protein). Determining the morphology of multicomponent, protein-based drug formulations is particularly challenging. Here, we use dynamic nuclear polarization (DNP) solid-state NMR spectroscopy to determine the hierarchy of components within spray-dried particles containing protein, trehalose, leucine, and trileucine. DNP NMR was applied to these formulations to assess the localization of the components within the particles. We found a consistent scheme, where trehalose and the protein are co-located within the same phase in the core of the particles and leucine and trileucine are distributed in separate phases at the surface of the particles. The description of the hierarchy of the organic components determined by DNP NMR enables the rationalization of the performance of the formulation.


Assuntos
Excipientes , Trealose , Leucina/química , Trealose/química , Excipientes/química , Aerossóis/química , Espectroscopia de Ressonância Magnética , Pós/química , Administração por Inalação , Tamanho da Partícula
16.
Sci Rep ; 13(1): 16624, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789124

RESUMO

A minimal necessary condition for preclinical studies to contribute to risk assessments of e-cigarettes (ECs) is the ability to expose laboratory animals to an appropriate dosage of aerosols. In this study, we examined the fulfilment of this essential consistency condition for the ECX-Joyetech E-Vic Mini (ECX), a piece of computerized exposure equipment manufactured by SCIREQ, which has been employed by numerous in vivo testing. We began by calibrating the customary Evic VTC mini device mod and the 4 coils available, reproducing in the laboratory the operation of the ECX in the power-control and temperature-control modes, using puffing parameters recommended by its documentation. We then conducted the following tests for each coil: (1) verifying whether the generated aerosols satisfy an optimal operational regime, free from overheating, as determined by a linear relation between the mass of vaporized e-liquid vs. supplied power and (2) obtaining the mean yields of aldehydes for each of the tested power settings and coils. The results of these tests show that, under the main conditions used in in vivo testing, the ECX equipment fails to comply with these consistency requirements, especially for coils with low subohm resistance, a shortcoming that can be corrected by applying much larger airflows for these coils. Therefore, the outcomes of preclinical studies using the ECX equipment should be examined with great scepticism and subjected to further testing.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Animais , Aerossóis/química , Pulmão , Aldeídos
17.
Environ Sci Process Impacts ; 25(10): 1645-1656, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37721367

RESUMO

Chlorine plays an important role in tropospheric oxidation processes, in both marine and continental environments. Although modeling studies have explored the importance of halogen chemistry, uncertainty remains in associated chemical mechanisms and fundamental kinetics parameters. Prior kinetics measurements of multiphase halogen recycling reactions have been largely performed with dilute, bulk solutions, leaving unexplored more realistic chemical systems which have high solute concentrations and are internally mixed with both halide and organic components. Here, we address the multiphase kinetics of gaseous HOCl using an aerosol flow tube and aerosol mass spectrometer to study its reactions with particulate chloride, using atmospherically relevant particle acidity, solute concentrations, and ionic strength. We also investigate the chemistry that results when biomass burning (BB) aerosol components and chloride are internally mixed. Using pH-buffered deliquesced particles, we show that the rate constant for reaction of dissolved HOCl with H+ and Cl- at high relative humidity (RH) (80-85%) is within a factor of two of the literature value for bulk phase conditions. However, at lower RH values (60-70%) where the particles are considerably more concentrated, the rate constant for chloride loss from the particles is an order of magnitude higher. For pure organic compounds commonly found in biomass burning (BB) aerosol, such as coniferaldehyde, salicylic acid and furfural, an increase in the aerosol chlorine content occurs with HOCl exposure, indicating the formation of organochlorine species. Together, these independent findings explain results for internally mixed aerosol particles with both chloride and BB components present where we observed behavior consistent with both chloride loss and organochlorine formation occurring simultaneously upon HOCl exposure. Our results indicate that chlorine recycling via HOCl uptake by chloride-containing particles will occur in the atmosphere efficiently over a wide range of RH conditions, even when reactive organic compounds are present in the same particles as chloride. Simultaneously, formation of organochlorine compounds, which are commonly toxic, is likely occurring when reactive organic components are present.


Assuntos
Cloretos , Cloro , Ácido Hipocloroso , Halogênios , Aerossóis/química , Cinética
18.
Eur J Pharm Biopharm ; 191: 265-275, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657613

RESUMO

Dry powder inhalers (DPI) are important for topical drug delivery to the lungs, but characterising the pre-aerosolised powder microstructure is a key initial step in understanding the post-aerosolised blend performance. In this work, we characterise the pre-aerosolised 3D microstructure of an inhalation blend using correlative multi-scale X-ray Computed Tomography (XCT), identifying lactose and drug-rich phases at multiple length scales on the same sample. The drug-rich phase distribution across the sample is shown to be homogeneous on a bulk scale but heterogeneous on a particulate scale, with individual clusters containing different amounts of drug-rich phase, and different parts of a carrier particle coated with different amounts of drug-rich phase. Simple scalings of the drug-rich phase thickness with carrier particle size are used to derive the drug-proportion to carrier particle size relationship. This work opens new doors to micro-structural assessment of inhalation powders that could be invaluable for bioequivalence assessment of dry powder inhalers.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Pós/química , Portadores de Fármacos/química , Administração por Inalação , Sistemas de Liberação de Medicamentos/métodos , Lactose/química , Inaladores de Pó Seco/métodos , Excipientes/química , Tomografia Computadorizada por Raios X , Tamanho da Partícula , Aerossóis/química
19.
Eur J Pharm Biopharm ; 189: 264-275, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392870

RESUMO

Low oral absorption and extensive first pass metabolism of progesterone is reported for many oral formulations which warrants investigation into other routes of administration. It is the aim of this study to investigate the generation of inhaled formulations of progesterone though a spray drying approach with a focus on how spray drying impacts the physicochemical properties of progesterone. Formulations of progesterone with L-leucine and hydroxypropyl methylcellulose acetate succinate (HPMCAS) are reported to this aim. X-ray diffraction, spectroscopy and thermal analysis were used to characterise these formulations and confirmed that progesterone crystallises as the Form II polymorph during spray drying regardless of the solvent used. The resultant formulations showed higher aqueous solubility than progesterone Form I starting material and the addition of HPMCAS was shown to temporarily enable a supersaturated state. Thermal analysis was used to show that the Form II polymorph was sensitive to transformation to Form I during heating. The addition of L-leucine to the formulations reduced the temperature for the polymorphic transformation by âˆ¼ 10 °C. However, when HPMCAS was added to the formulation, the Form II polymorph was prevented from transforming to the Form I polymorph. Cascade impaction was used to determine the aerosol performance of the spray dried powders and showed promising lung deposition profiles (mass median aerodynamic diameter 5 µm) with significant variation depending on the organic solvent used and the ratio of organic to aqueous phase in the feedstock. However, further optimisation of formulations was required to direct more progesterone into the alveolar regions. The addition of HPMCAS was seen to increase the alveolar deposition and therefore formed a formulation with a lower fine particle fraction and mass median aerodynamic diameter. The most suitable formulation for inhalation was formed from a 50:50 acetone:water mixture and showed an ED, FPF and FPD of 81.7%, 44.5% and 7.3 mg respectively. Therefore, HPMCAS is suggested as a suitable excipient to increase solubility, prevent polymorphic transformation and improve inhalation properties of spray dried progesterone formulations. This study highlights the use of spray drying to form inhalable progesterone powders with higher solubility which may broaden the application of this medicine.


Assuntos
Excipientes , Progesterona , Pós/química , Leucina/química , Excipientes/química , Administração por Inalação , Aerossóis/química , Solventes , Tamanho da Partícula , Inaladores de Pó Seco/métodos
20.
J Pharm Biomed Anal ; 234: 115552, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37393690

RESUMO

In terms of risk assessment especially for the impurities with different ultraviolet responses, quantitative analysis without the availability of corresponding reference substances currently poses a challenge. In this study, a universal response method was established for the quantitative analysis of photodegradable impurities in lomefloxacin hydrochloride ear drops by high performance liquid chromatography-charged aerosol detector (HPLC-CAD) for the first time. The chromatographic conditions and CAD parameters were optimized for a good separation and sensitivity. The uniform response of developed method was validated by impurity reference substances with different ultraviolet responses. In the gradient compensation HPLC-CAD method validation, good linearities were obtained with coefficient of determination (R2) all greater than 0.999 for lomefloxacin and impurity reference substances. The average recoveries of the impurities were 98.63%- 102.18% by UV and 97.92%- 102.57% by CAD, respectively. RSDs all were less than 2.5% for intra-day and inter-day precision by UV and CAD, with good precision and accuracy. The correction factor experimental results showed that the developed method provided a uniform response to the impurities with differences chromophores in lomefloxacin. The effects of packaging materials and excipients on the photodegradation were also investigated using the developed method. The results of correlation analysis showed that the packaging materials with low light transmittance and the organic excipients (glycerol and ethanol) could significantly improve the stability of lomefloxacin hydrochloride ear drops. The developed HPLC-CAD quantification method was a reliable and universal response method for quantitative analysis of impurities in the lomefloxacin. This study also revealed the key factors affecting the photodegradation of lomefloxacin hydrochloride ear drops, which guided enterprises to improve drug prescription and packaging materials and ensure the public medication safety.


Assuntos
Excipientes , Fotólise , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Aerossóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...